Reinforcement learning-based multi-agent system for network traffic signal control

نویسندگان

  • I. Arel
  • C. Liu
  • T. Urbanik
  • A. G. Kohls
چکیده

A challenging application of artificial intelligence systems involves the scheduling of traffic signals in multi-intersection vehicular networks. This paper introduces a novel use of a multi-agent system and reinforcement learning (RL) framework to obtain an efficient traffic signal control policy. The latter is aimed at minimising the average delay, congestion and likelihood of intersection cross-blocking. A five-intersection traffic network has been studied in which each intersection is governed by an autonomous intelligent agent. Two types of agents, a central agent and an outbound agent, were employed. The outbound agents schedule traffic signals by following the longest-queue-first (LQF) algorithm, which has been proved to guarantee stability and fairness, and collaborate with the central agent by providing it local traffic statistics. The central agent learns a value function driven by its local and neighbours’ traffic conditions. The novel methodology proposed here utilises the Q-Learning algorithm with a feedforward neural network for value function approximation. Experimental results clearly demonstrate the advantages of multi-agent RL-based control over LQF governed isolated single-intersection control, thus paving the way for efficient distributed traffic signal control in complex settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-Time Coordinated Signal Control Using Agents with Online Reinforcement Learning

This paper introduces a multi-agent architecture for real-time coordinated signal control in an urban traffic network. The multi-agent architecture consists of three hierarchical layers of controller agents: intersection, zone and regional controllers. Each controller agent is implemented by applying artificial intelligence concepts namely fuzzy logic, neural network and evolutionary algorithm....

متن کامل

User-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm

Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...

متن کامل

Development and Evaluation of a Multi-Agent Based Neuro-Fuzzy Arterial Traffic Signal Control System

15. Supplementary Notes Supported by a rant from the U.S. Department of Transportation, University Transportation Centers Program. 16. Abstract Arterial traffic signal control is a very important aspect of traffic management system. Efficient arterial traffic signal control strategy can reduce delay, stops, congestion, and pollution and save travel time. Commonly used pre-timed or traffic actu...

متن کامل

Urban Traffic Control Using Adjusted Reinforcement Learning in a Multi-agent System

Dynamism, continuous changes of states and the necessity to respond quickly are the specific characteristics of the environment in a traffic control system. Proposing an appropriate and flexible strategy to meet the existing requirements is always an important issue in traffic control. This study presents an adaptive approach to control urban traffic using multi-agent systems and a reinforcemen...

متن کامل

Improved Multi-Agent Reinforcement Learning for Minimizing Traffic Waiting Time

This paper depict using multi-agent reinforcement learning (MARL) algorithm for learning traffic pattern to minimize the traveling time or maximizing safety and optimizing traffic pattern (OTP). This model provides a description and solution to optimize traffic pattern that use multi-agent based reinforcement learning algorithms. MARL uses multi agent structure where vehicles and traffic signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010